Perhaps the most common predicament a newcomer faces when learning electronics is figuring out exactly what it is he or she must learn. What topics are worth covering, and in which general order should they be covered? A good starting point to get a sense of what is important to learn and in what general order is presented in an electronics book. A book provides an overview of the basic elements that go into designing practical electrical gadgets and represents the information you will find in electronics. The following paragraphs describe these basic elements in detail.

At the top of the chart comes the theory. This involves learning about voltage, current, resistance, capacitance, inductance, and various laws and theorems that help predict the size and direction of voltages and currents within circuits. As you learn the basic theory, you will be introduced to basic passive components such as resistors, capacitors, inductors, and transformers. The most common component is the ac to dc converter.

Next down the line comes discrete passive circuits. Discrete passive circuits include current-limiting networks, voltage dividers, filter circuits, attenuators, and soon. These simple circuits, by themselves, are not very interesting, but they are vital ingredients in more complex circuits.

After you have learned about passive components and circuits, you move on to discrete active devices, which are built from semiconductor materials. These devices consist mainly of diodes (one-way current-flow gates), transistors (electrically con-trolled switches/amplifiers), and thyristors (electrically controlled switches only).

Once you have covered the discrete active devices, you move on to discrete active/passive circuits. Some of these circuits include rectifiers (ac-to-dc converters), amplifiers, oscillators, modulators, mixers, and voltage regulators. This is where things start getting interesting.

To make things easier on the circuit designer, manufacturers have created integrated circuits (ICs) that contain discrete circuits—like the ones mentioned in the last paragraph—that are crammed onto a tiny chip of silicon. The chip usually is housed within a plastic package, where tiny internal wires link the chip to external metal terminals. Integrated circuits such as amplifiers and voltage regulators are referred to as analog devices, which means that they respond to and produce signals of varying degrees of voltage. (This is unlike digital ICs, which work with only two voltage levels.) Becoming familiar with integrated circuits is a necessity for any practical circuit designer.

Read more – Next part.

At the top of the chart comes the theory. This involves learning about voltage, current, resistance, capacitance, inductance, and various laws and theorems that help predict the size and direction of voltages and currents within circuits. As you learn the basic theory, you will be introduced to basic passive components such as resistors, capacitors, inductors, and transformers. The most common component is the ac to dc converter.

Next down the line comes discrete passive circuits. Discrete passive circuits include current-limiting networks, voltage dividers, filter circuits, attenuators, and soon. These simple circuits, by themselves, are not very interesting, but they are vital ingredients in more complex circuits.

After you have learned about passive components and circuits, you move on to discrete active devices, which are built from semiconductor materials. These devices consist mainly of diodes (one-way current-flow gates), transistors (electrically con-trolled switches/amplifiers), and thyristors (electrically controlled switches only).

Once you have covered the discrete active devices, you move on to discrete active/passive circuits. Some of these circuits include rectifiers (ac-to-dc converters), amplifiers, oscillators, modulators, mixers, and voltage regulators. This is where things start getting interesting.

To make things easier on the circuit designer, manufacturers have created integrated circuits (ICs) that contain discrete circuits—like the ones mentioned in the last paragraph—that are crammed onto a tiny chip of silicon. The chip usually is housed within a plastic package, where tiny internal wires link the chip to external metal terminals. Integrated circuits such as amplifiers and voltage regulators are referred to as analog devices, which means that they respond to and produce signals of varying degrees of voltage. (This is unlike digital ICs, which work with only two voltage levels.) Becoming familiar with integrated circuits is a necessity for any practical circuit designer.

Read more – Next part.